Resampling LDA/QR and PCA+LDA for Face Recognition
نویسندگان
چکیده
Principal Component Analysis (PCA) plus Linear Discriminant Analysis (LDA) (PCA+LDA) and LDA/QR are both two-stage methods that deal with the small sample size (SSS) problem in traditional LDA. When applied to face recognition under varying lighting conditions and different facial expressions, neither method may work robustly due to limited number of training samples for each class in the training set. Recently, resampling, a technique that generates multiple subsets of samples from the training set, has been successfully employed to improve the classification performance of the PCA+LDA classifier. In this paper, stimulated by such success, we propose a resampling LDA/QR method to improve LDA/QR’s performance. Furthermore, by analyzing the difference between LDA/QR and PCA+LDA and taking advantage of such difference, we incorporate LDA/QR and PCA+LDA in a combined framework by resampling for face recognition. Experimental results on AR dataset show that 1) resampling LDA/QR yields significantly higher classification performance than the original LDA/QR, and 2) resampling LDA/QR and resampling PCA+LDA in a combined framework further improves the classification compared to either resampling LDA/QR or resampling PCA+LDA.
منابع مشابه
Linear Discriminant Analysis for Subclustered Data
Linear discriminant analysis (LDA) is a widely-used feature extraction method in classification. However, the original LDA has limitations due to the assumption of a unimodal structure for each cluster, which is not satisfied in many applications such as facial image data when variations, e.g. angle and illumination, can significantly influence the images. In this paper, we propose a novel meth...
متن کاملEfficient Kernel Discriminant Analysis via QR Decomposition
Linear Discriminant Analysis (LDA) is a well-known method for feature extraction and dimension reduction. It has been used widely in many applications such as face recognition. Recently, a novel LDA algorithm based on QR Decomposition, namely LDA/QR, has been proposed, which is competitive in terms of classification accuracy with other LDA algorithms, but it has much lower costs in time and spa...
متن کاملAn Efficient LDA Algorithm for Face Recognition
It has been demonstrated that the Linear Discriminant Analysis (LDA) approach outperforms the Principal Component Analysis (PCA) approach in face recognition tasks. Due to the high dimensionality of a image space, many LDA based approaches, however, first use the PCA to project an image into a lower dimensional space or so-called face space, and then perform the LDA to maximize the discriminato...
متن کاملFace Recognition Using Pca, Lda and Ica Approaches on Colored Images
In this paper, the performances of appearance-based statistical methods such as Principal Component Analysis (PCA), Linear Discriminant Analysis (LDA) and Independent Component Analysis (ICA) are tested and compared for the recognition of colored face images. Three sets of experiments are conducted for relative performance evaluations. In the first set of experiments, the recognition performanc...
متن کاملDiscriminant Analysis of Principal Components for Face Recognition
In this paper we describe a face recognition method based on PCA (Principal Component Analysis) and LDA (Linear Discriminant Analysis). The method consists of two steps: rst we project the face image from the original vector space to a face subspace via PCA, second we use LDA to obtain a best linear clas-siier. The basic idea of combining PCA and LDA is to improve the generalization capability ...
متن کامل